
1

CS 410/510: Advanced
 Programming

Lecture 7: Hamming, Closures, Laziness

Mark P Jones
Portland State University

2

The Hamming Set:
hamming = { 1 }
 [{ 2 * x | x 2 hamming }
 [{ 3 * x | x 2 hamming }
 [{ 5 * x | x 2 hamming }

hamming = { 1, 2, 3, 4, 5, 6, 8, 9, 10,
 12, 15, 16, 18, 20, 24, … }

3

The Hamming Sequence:
hamming = 1 :
 (merge [2 * x | x <- hamming]
 (merge [3 * x | x <- hamming]
 [5 * x | x <- hamming]))

Main> hamming
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18,

20, 24, … ^C{Interrupted!}
Main>

4

The Hamming Sequence:
hamming = 1 :
 (merge (map (2*) hamming)
 (merge (map (3*) hamming)
 (map (5*) hamming)))

Main> hamming
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18,

20, 24, … ^C{Interrupted!}
Main>

How does this work?

5

“Infinite” Lists in Haskell:
How do examples like the following work?

Main> [1..]
[1,2,3,4,5,6,7,8,9,10,11^C{Interrupted!}

Main> iterate (10*) 1
[1,10,100,1000,10000,100000,1000000^C{Interrupted!}

Main> fibs where fibs = 0 : 1 : [x+y | (x,y) <- zip fibs (tail fibs)]
[0,1,1,2,3,5,8,13,21,34,55,89,144,233, ^C{Interrupted!}

Main>

6

Closures, Delays, Thunks …

   Haskell Expressions are treated as:

  Thunks
  Closures
  Delayed Computations
  Suspensions
  …

   Expressions are evaluated:
  Lazily
  On demand
  By need
  …

7

[1..]
The list [1..] is syntactic sugar for the
expression enumFrom 1, where:

 enumFrom n = n : enumFrom (n+1)

enumFrom n

Code: instructions on
how to produce the

next element

Data: inputs that are
needed to produce the

next element

Closure/Thunk

8

[n..m]
The list [n..m] is syntactic sugar for the
expression enumFromTo n m, where:

 enumFromTo n m
 = if n<=m then n : enumFromTo (n+1) m

 else []

enumFromTo n, m

Code: instructions on
how to produce the

next element

Data: inputs that are
needed to produce the

next element

Closure/Thunk

9

sum [1..10]
sum xs = sum’ 0 xs
 where sum’ n [] = n
 sum’ n (x:xs) = sum’ (n+x) xs

sum [1..10]
= sum’ 0 [1..10]
= sum’ 1 [2..10]
= sum’ 3 [3..10]
= sum’ 6 [4..10]
= …
= sum’ 55 [11..10]
= 55

t :=0; n:=1; m:=10;
while (n<=m) {
 t := t + n;
 n := n+1;
}

sum’ t [n..m]

10

Closures in Smalltalk:

   Blocks provide a similar mechanism:

  [i := i + 1] describes a computation, but
doesn’t run it (yet)

  aBlock value forces

   Essential to make control structures work:
  aBool ifTrue: […] ifFalse: […]

   A bigger example:
  BlockClosure>>>doWhileFalse: conditionBlock
  |result|
  [result := self value. conditionBlock value] whileFalse.
  ^ result

11

[1..]
In Smalltalk:

   A class EnumFrom, instance variable head

   A class method: EnumFrom with: head

   Accessor methods:
EnumFrom>>> head
^ head

EnumFrom>>> tail
^ EnumFrom with: (head+1)

12

map (mult*)
In Smalltalk:

   A class MultiplyBy, instance variables mult, aList

   A method: aList multiplyBy: mult
 (Which class should be home to this code?)

   Accessor methods:
EnumFrom>>> head
^ aList head * mult

EnumFrom>>> tail
^ aList tail multiplyBy: mult

13

The Hamming Sequence:

1 …

5* 3* 2*
5 3 2

3

2

Initialization

14

The Hamming Sequence:

1 2 …

5* 3* 2*
5 3 2

3

2

Get

15

The Hamming Sequence:

1 2 …

5* 3* 2*
5 3 4

3

3

Advance

16

The Hamming Sequence:

1 2 3 …

5* 3* 2*
5 3 4

3

3

Get

17

The Hamming Sequence:

1 2 3 …

5* 3* 2*
5 6 4

5

4

Advance

18

The Hamming Sequence:

1 2 3 4 …

5* 3* 2*
5 6 4

5

4

Get

19

The Hamming Sequence:

1 2 3 4 …

5* 3* 2*
5 6 6

5

5

Advance

20

The Hamming Sequence:

1 2 3 4 5 …

5* 3* 2*
5 6 6

5

5

Get

21

The Hamming Sequence:

1 2 3 4 5 …

5* 3* 2*
10 6 6

6

6

Advance

22

The Hamming Sequence:

1 2 3 4 5 6 …

5* 3* 2*
10 6 6

6

6

Get

23

The Hamming Sequence:

1 2 3 4 5 6 …

5* 3* 2*
10 9 8

9

8

Advance
etc…

24

Lists and Streams:
class List {
 int head;
 List tail;
 List(int head) {
 this.head = head;
 this.tail = null;
 }
}

 interface Stream {
 int get();
 void advance();
 }

25

Multiplier Streams:
class MultStream implements Stream {
 private int mult;
 private List elems;
 MultStream(int mult, List elems) {
 this.mult = mult;
 this.elems = elems;
 }

 public int get() { return mult * elems.head; }
 public void advance() { elems = elems.tail; }
}

26

Merge Streams:
class MergeStream implements Stream {
 private Stream left, right;
 MergeStream(Stream left, Stream right) {
 this.left = left;
 this.right = right;
 }

 public int get() {
 int l = left.get();
 int r = right.get();
 return (l<=r) ? l : r;
 }

27

Merge Streams (advance):
 public void advance() {
 int l = left.get();
 int r = right.get();
 if (l == r) {
 left.advance();
 right.advance();
 } else if (l < r) {
 left.advance();
 } else {
 right.advance();
 }

28

Main Loop:
class Hamming {
 public static void main(String[] args) {
 List ham = new List(1);
 Stream s = new MergeStream(new MultStream(2, ham),
 new MergeStream(new MultStream(3, ham),
 new MultStream(5, ham)));
 for (;;) {
 System.out.print(ham.head + ", ");
 int next = s.get();
 ham = ham.tail = new List(next);
 s.advance();
 }
 }
}

29

Observations:

   Hamming produces elements faster than

the multiply/merge streams consume them

  We will never attempt to read uninitialized
values

   The blue pointers are always behind the
red pointer

   But the distance between the pointers will
grow arbitrarily large … this can be
considered a space leak

30

YAHS: (yet another Hamming solution)
factorOut :: Int -> Int
factorOut n m

 | r == 0 = factorOut n q
 | otherwise = m
 where (q, r) = divMod m n

inHamming :: Int -> Bool
inHamming = (1==)

 . factorOut 2
 . factorOut 3
 . factorOut 5

31

Summary:

   Programming with closures feels very natural in

Haskell
  Built-in support for lazy evaluation
  Closure = function + arguments
  Recursion

   But we can program with closures in other
languages too!
  One view of objects is as generalized closures:

Instance variables = Data
Methods = Multiple, parameterized Code entry points

   A powerful programming technique (not just for
infinite lists)!

32

concat:

  concat :: [[a]] -> [a]

  concat [[1,2], [3,4,5], [6]]

= [1,2,3,4,5,6]

  Laws:
  filter p . concat = concat . map (filter p)
  map f . concat = concat . map (map f)
  concat . concat = concat . map concat

33

List Comprehensions:
General form:

  [expression | qualifiers]

where qualifiers are either:
  Generators: pat <- expr; or
  Guards: expr; or
  Local definitions: let defns

Works like a kind of generalized “for loop”

34

Examples:

[x*x | x <- [1..6]]
= [1, 4, 9, 16, 25, 36]

[x | x <- [1..27], 28 `mod` x == 0]
= [1, 2, 4, 7, 14]

[m | n <- [1..5], m <-[1..n]]
= [1, 1,2, 1,2,3, 1,2,3,4, 1,2,3,4,5]

35

Applications:

   Some “old friends”:
 map f xs = [f x | x <- xs]
 filter p xs = [x | x <- xs, p x]
 concat xss = [x | xs <- xss, x <- xs]

   Can you define take, head, or (++) using a
comprehension?

36

Laws of Comprehensions:

[x | x <- xs] = xs
[e | x <- xs] = map (\x -> e) xs

[e | True] = [e]
[e | False] = []

[e | gs1, gs2] = concat [[e | gs2] | gs1]

37

Example:

[(x,y) | x <- [1,2], y <- [1,2]]

= concat
 [[(x,y) | y <- [1,2]] | x <- [1,2]]

= concat
 [map (\y -> (x,y)) [1,2] | x <- [1,2]]

= concat
 (map (\x ->
 map (\y -> (x,y)) [1,2]) [1,2])

